The Strategy Unit.

Risk prediction

Steven Wyatt

Why predict risk?

People experience adverse and costly health events;

- a stroke / acute myocardial infarction
- a fall >> hip or forearm fracture
- an unplanned hospital admission
- death

If we could predict these events then we could;

- set health insurance premiums at appropriate levels
- allocate healthcare funding / set capitated budgets / at an appropriate level

If we could predict these events **and** intervene to reduce the risk of the event then we could;

- reduce the frequency of adverse events
- improve the quality of people's lives
- reduce (net) healthcare costs

Predicting emergency admissions

Lots of tools

Combined predictive model, PRISM, PEONY, QAdmissions, HARP, ACGs

Lots of initiatives

NHS England - Enhanced Service Specification - Avoiding Unplanned Admissions: Proactive Case Finding and Patient Review for Vulnerable People enhanced service (*£480M over 3 years*)

NHS Wales - QOF Quality and Productive Indicators

Population health management

Draft PCN specification

TENTHS 1

Control groups eliminate rival explnations

Predictive risk stratification model: a randomised stepped-wedge trial in primary care (PRISMATIC)

Objective: To measure the effects on service usage and associated costs , and on mortality, quality of life and satisfaction of deploying a risk stratification tool (PRISM) on primary care.

Intervention: Provision of risk stratification tool to practices, along with training and support.

Participants: 230,000 patients in 32 practices in South Wales.

Study design: Randomised step-wedge study design with qualitative and economic components.

Snooks H, Bailey-Jones K, Burge-Jones D, Dale J, Davies J, Evans B, et al. Predictive risk stratification model: a randomised stepped-wedge trial in primary care (PRISMATIC). Health Serv Deliv Res 2018;6(1).

Results

Outcome	Impact (per 100 patients per year)	95% confidence interval
Emergency hospital admissions A&E attendances GP events	+ 1.1 + 3.0	(1.0 to 1.3) (2.8 to 3.2)
Outpatient visits Hospital days		
Intervention costs Cost of changes in healthcare use		

Given the uncertainties, consider design stage evaluation before taking the final decision to implement.

If it doesn't stack up in theory, it's unlikely to in practice.

Will risk prediction save money

A is the average cost of an adverse event;

PPV is the positive predictive value of a tool which aims to identify patients who will have an adverse event in a given period;

NNT is the number of people that need to receive the intervention in order to avoid one adverse event; and

I is the unit cost of an intervention to prevent an adverse event which is delivered to those identified by the predictive risk tool then,

I < **A.PPV/NNT** for the intervention to save money.

A worked example

9

Anticoagulants – Patients with Atrial Fibrillation – to prevent one ischemic heart attack – 40 Beta-blocker – Heart failure – to prevent one hospitalisation – 110 NRT – smokers – to support one person to quit – 15 Aspirin – patients at risk of CVD - to prevent one non-fatal heart attack – 333

A worked example

10

Anticoagulants – Patients with Atrial Fibrillation – to prevent one ischemic heart attack – 40 Beta-blocker – Heart failure – to prevent one hospitalisation – 110 NRT – smokers – to support one person to quit – 15 Aspirin – patients at risk of CVD - to prevent one non-fatal heart attack – 333

Why predict risk

- If we could predict these events <u>and</u> intervene to reduce the risk of the event then we could;
- reduce the frequency of adverse events
- improve the quality of people's lives
- reduce (net) healthcare costs

Lacks empirical evidence – revise theory

Share your insights...

Any key insights...

So what... (any scope for application)

One wish...

Reflections