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* www.midlandsdecisionsupport.nhs.uk/communities-of-practice/midlands-analyst-network/

*  With queuing models, we usually consider the mean e.g. waiting time as a performance measure
* |In healthcare we usually want some % of patients to be withing a target time

* The shape of the distribution of individual patients waiting times is (negative) exponential

Target maximum time = 52 weeks
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(Slack et al, 2016) p.349
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Server Expected waiting time in queue
Distribution of Distribution of IGERE - _ . _ _
arrival times processing times ¥ ¥ o or probability (risk) that waiting time exceeds some target time

Expected queue length
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j : Sewef2  Probability (risk) all servers busy (so customer has wait)
Source of k k : o e.g., patient waits in A&E for an inpatient bed)
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i o » Probability (risk) a restricted queue is full (so customer is rejected)
i Queue or ‘waiting hne : Served
| Sen;e customers o e.g., patient becomes an outlier or transferred to another hospital
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 Lots of assumptions...
» Steady state (long-run averages)

Modelling queuing systems
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“bed occupancy should be 85% (or 82 or 84...)”
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th@bmj NHS [Audit Commission, 2003]
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Probability of poor outcome (%)
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results from computer simulations of large, medical inpatient bed pool (Bagust et al., 1999, p.156)
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Predicted (long-run) Average Consequences of Occupancy

Prob. all beds full

100%

80%

60%

40%

20%

0% -

-

Cut to 22 beds »>

34 beds
occupancy=85%

Average Bed Occupancy
occupancy=54%

0% 10% 20% 30% 40% 50% l 60% 70% 80% 90%  100%

Occupancy is not a target!
the appropriate level is a consequence of need to absorb variation
The curve was drawn using results from queuing theory (Erlang equations)

"The 85% bed occupancy
fallacy: The use, misuse and
insights of queuing theory*
(Proudlove, 2020)

- makes simplistic assumptions, but gives you a quick idea for simple situations; for more complex situations you need simulation (more laborious!) 7


https://journals.sagepub.com/doi/10.1177/0951484819870936
https://journals.sagepub.com/doi/10.1177/0951484819870936
https://journals.sagepub.com/doi/10.1177/0951484819870936
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See Proudlove (2020)

Predicted (long-run) Average Consequences of Occupancy

1.0%

With more resolution: J /
0.3% - _ _ And we can also model situations where
——Patients Wait Model E¢ patients are transferred when busy

= 08%- —+—Patients Transferred Model E5 £ |0t calls in a telephone system — Erlang)
% » (This graph shows the same curve as above, but
a 07% - for a smaller range on the X and Y scales.)
E « If the starting point is that the risk of access block
2 06% - should be around 0.1% (i.e. a bed is available
= when required on 99.9% of occasions), then the
ﬁ 0.5% Patients Wait Model suggests that the average
£ occupancy should be around 56%, and so 33 beds
2 0.4 | would be required.
5 * The average occupancy should be an outcome of
5 the performance required of the bed pool — it is an
£ 0.3% 4 output not an input to decision making, and
& depends on the characteristics of the system.
& 0.2% -

0.1% A

0.0% -

40% 46% 50% 55 % 60% 65% 70%
Average Occupancy
Occupancy 4630 47% 493 50% 51% 53% 54% 56% 58% &0 B2% 643 66 69%
Beds 40 39 38 37 3B 35 34 33 32 31 30 29 28 27




The simplest models make lots of
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assumptions including:

steady state
‘Markovian’ probability
distributions
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x
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PDF of inter-arrival time or service duration = x hours

DD 0.020

Same as exponential probability distribution for
the time between arrivals and
the service duration (e.g., L0S)
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1/A=1/20 1/u =130 months
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Do the assumptions fit?

See Proudlove (2020)

count

60-

40 -

20-

A Manchester Urology Bed Pool

* Actual admissions per day (black), and Poisson
distibution (red) with the same mean (5.65 per day)

* The actual admissions have larger spread than
the Poisson (Markovian) model

10 15
Admissions per day

10
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See Proudlove (2020)

count

400 -

200 -

* Actual LoS in Urology (black), and exponential distibution (red) with
the same mean (4.25 days)

* The actual LoS has larger spread than the exponential (Markovian) model

20 40

B0
Bed Pool Length of Stay (days)

11



W, = expected waiting time in queue

MANCHESTER A =mean arrival rate
1824 U = mean service rate (potential, if customers)
The University of Manchester 1/p = mean service duration [e.g., AL0oS]
Alliance Manchester Business School
" s = number of servers [e.g., beds]
Simplest model (Markovian, 1 server, customers wait)  |f, = _P )z p = utilisation = A/(sp)
(M/M/1):(GD/o/) 1—p/u c, = coefficient of variation of arrivals
[std dev of time between arrivals / its mean]
c, = coefficient of variation of service
[std dev of service duration / its mean (t,)]
Relaxing Markovian assumptions c + c? p \1
(to any ‘General’ distribution): Wy = 5 1-p ; The Kingman Formula
(G/G/1):(GD/oo/0) | : :
Ik_“J \ . ;‘\_Y_) (Markovian c’s are 1, so Vterm=1)
|||I
Delay  Variation _— o
(timein  term Utilisation term Processing time

queue)

Delay =VxUxT

2 2 J20s+1)-1
: , W. ~ Ca ¥ Co)\[P 1 The VUT Relationship

Modelling multiple servers (from the same queue): q 2 s(1-p) [
(G/G/s):(GD/oo/)

\ | - )

L "

Delay Variation - ) . .

(time in berm Utilisation term Processing time

queue) 12
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Different bed pools have
different queuing system
performance curves
depending on

« Variation

« Utilisation

* (and number of servers)
« Service Duration

» VUT curves

o So, the same risk of all
beds being full when
needed would require
different average
utilisations (so numbers
of beds)

Probability all beds full, Eg - so patient is transferred

Risk...

5% risk /\
2% risk
— _—-F"/
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Average bed pool ultilisation (Average actual utilisation shown by the large circles)
See Proudlove (2020) Occupancy
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30% -

20% -

10%

0% -

Delay=VxUxT

Insight from the behaviour of systems:
p\/m_l 1

Maximum occupancy (1 bed)

* The graph shows the characteristic performance curves of the 24
bed pools modelled by de Bruin et al. (2010), using the PATIENTS
TRANSFERRED model

* The curves clearly show that the characteristics of these bed pools
make 85% occupancy (red vertical line) an inappropriate target.

* The first two bed pools cannot, mathematically, achieve an average
occupancy of 85% since the average occupancy with only 1 bed
would be lower than this!

* de Bruin et al. (2010) considered the risks of all beds being full 2%,
5% and 10% of the time, with hospital policy makers focused on
the 5% level

* The large circles show actual average occupancy, suggesting
some redistribution of beds might be appropriate

* The bottom (grey) curve is the comparative result from Bagust
et al. (1999) who modelled a medical bed bool of 200 beds

actual mean utilisation in that ward

10% risk

85% occupancy

/

Wards of a
Dutch hospital

ward

'. Special Care cardiac surgery
'. Pediatric Intensive Care Unit
. Coronary Care Unit

'. Medium Care

4 NC Ophthalmology

'. Meonatal Intensive Care Unit
. Intensive Care Unit medical
'. Intensive Care Unit surgical
. MC Internal lung

4 NC Pediatric unit 1

4 NC Otolaryngology (ENT)
4 NC Pediatric unit 2

4 NC Obstetrics

. MC Internal oncology

*. MC MNeurology

'. MNC Internal medicine unit 1
. MC Internal medicine unit 2
'. MC Vascular surgery

. MC Hematology

'. MNC Gynaecology

. MC MNeuro- and orthopedic surgery
'. MC Surgical oncology

. MC Cardiac surgery and cardiology
'. MC Trauma surgery

Performance curve
from the Bagust et al
simulation (large,
medical bed pool)
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Accepting the systems’ characteristics (variation and service times)
you can slide up or down the performance curve

100%

Predicted (long-run) Average Consequences of Occupancy

80%

Delay=VxUxT

N Vo

60%

= Cc21+ce2 p\/2(5+1)—1
1 2 s(1—-p)

|

40%

4

20%

& More beds  Fewer beds = /

0%

0%

10% 20% 30% 40% 50% 60% 70%

Occupancy

80% 90%  100%
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a0% -

Frobability all beds full, Eg - so patient is transferred

20%-

10%

0%-

0% -

70% -

60% -

50% -

40% -

30% -

Or think about shifting the curve...
- one way to do this is by bed pooling

* The graph shows three of the previous bed pools, plus the effect
of combining them, as suggested by de Bruin et al. (2010), using
the PATIENTS TRANSFERRED model

* The effect of pooling is to improve the performance of the
system with the SAME number of beds.

ward
Delay =VxUxT 4 Special Care cardiac surgery
' Coronary Care Unit
Cg + Cg pV 2(s+1)-1 1 A Medium Care
W, = -
( 2 ) s(1—p) Ju

« Same aggregate
utilisation (work
being done)

» Much better

performance

Sharing the load

10% risk

// // / reduces the risks from
5% risk .
e v T tail events

0%

10% 20% 30% 40% 50% B0% 70% 80% 90%
Average bed pool ultilisation (Average actual utilisation shown by the large circles)

See Proudlove (2020) 15
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Demand Capacity Activity

FLOW >

Pathway A

Arrival rate

variation s |

Service rate

v -
b1ed. i SelvieeA \/‘/ variation
_Capagity Carve dut -~ " v B e e e

Arrival rate s a . .
Pathway B Serylge rate
variation

Segmentation

* Tailoring to customer segment: faster service
rates and/or lower variety of job types

* More efficient pathways outweigh carve-out

« There may be good reasons for ‘carve-out’? (depends on system and objectives)
 Butcanyou increase flexibility? [e.g., short-notice call-in to unused
appointment slots carved-out for expected urgent demand?]

Capacity Pooling

veees
o0t

100
90
80
70
60
50
40
30
20
10

Probability of poor outcome (%)

© No bed for patient
® Crisis day o

o

[PPU— e Ly

80

85 90 95 100
Average bed accupancy (%)

Relation of performance risks to average bed occupancy

What happened in NHS trusts?!

16
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30-

* The graph shows the characteristic performance curves
of the actual system

* Plus the effect of reducing the variation to benchmark
(Markovian) levels and lower

* The effect of reducing the variation is to improve the
performance of the system with the SAME number of beds.

20-

Delay=VxUxT

_ 2 + 2 ,0‘/2(5“)_1 1
]/Vq ~ —
2 sQ—=p) Ju

Average waiting time for a bed, WWq (hours)

10-

0% 10% 20% 30% 40% 50%

Average bed pool occupancy

See Proudlove (2020)

actual average occupancy

lower variation systems

70% 80%

Amount of Variation

= Actual system
= Arrivals Markovian
= Arrivals & Lo3 Markovian

= Arrivals & LoS half Markovian

« Same aggregate
utilisation (work being
done)

» Much better

performance

(Lean production, six

sigma etc: ultimately
working towards V = 0!)

0% 100%

17
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 The design of the system and the variation make system performance highly non-linear
* In particular, the long and fat tails
* Meaning low risk of poor performance [low breaches, trolley waits etc] requires very much better average performance

* So lower utilisation = more resource
* (and) orimprove the design of the system and/or reduce the variation!

18
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* Characteristics of system drive performance
* “85% occupancy” does not fit all environments

* Mean occupancy levels should be a consequence of the
demand characteristics you need to absorb

- ‘empty’ capacity protects the system
* e.g., sensible utilisation levels for knee surgery vs. ICU

* Queuing theory models give quick, first-cut results
« Make a lot of assumptions... High utilisation but
_ long waiting time
* Butgive good insights — e.g. the VUT relationship

* Beyondthatis simulation (laborious, data-hungry,

requires specialist knowledge and software) Reduction in

process variation

e Can shift the trade-off Short waiting
. time but low

* Bed pooling, but utilisation
- Pooling vs carve-out or segmentation? \(\

\/

- Behaviouralimpacts?!

Average waiting time
(or queue length)

</
* Reducing variation _— [ [ [ | | | |
- How?! 0O 10 20 30 40 50 60 70 80 90 100
Utilisation

(Slacketal., 2011)
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